
Automated Support for Combinational Creativity in
Requirements Engineering

Tanmay Bhowmik∗, Nan Niu†, Anas Mahmoud∗, and Juha Savolainen‡
∗ Department of Computer Science and Engineering, Mississippi State University, USA

† Department of Electrical Engineering and Computing Systems, University of Cincinnati, USA
‡ Danfoss Power Electronics A/S, Graasten, Denmark

tb394@msstate.edu, nan.niu@uc.edu, amm560@msstate.edu, JuhaErik.Savolainen@danfoss.com

Abstract—Requirements engineering (RE), framed as a cre-
ative problem solving process, plays a key role in innovating more
useful and novel requirements and improving a software system’s
sustainability. Existing approaches, such as creativity workshops
and feature mining from web services, facilitate creativity by
exploring a search space of partial and complete possibilities
of requirements. To further advance the literature, we support
creativity from a combinational perspective, i.e., making unfamil-
iar connections between familiar possibilities of requirements. In
particular, we propose a novel framework that extracts familiar
ideas from the requirements and stakeholders’ comments using
topic modeling and applies part-of-speech tagging to obtain
unfamiliar idea combinations. We apply our framework on
two large open source software systems and further report a
human subject evaluation. The results show that our framework
complements existing approaches by generating original and
relevant requirements in an automated manner.

Index Terms—Requirements engineering; creativity; topic
modeling; requirements elicitation

I. INTRODUCTION

Much of traditional requirements engineering (RE) has con-

sidered that requirements exist in the stakeholders’ minds in an

implicit manner [1], and has focused on models and techniques

to aid identification and documentation of such requirements.

Modern software industry, however, has become extremely

competitive as we find multiple software products striving to

serve the users in the same application domain. In order to

sustain, a software system needs to distinguish itself from

other similar products and consistently enchant customers

with novel and useful features. As a result, requirements

engineers need to create innovative requirements in order to

equip the software with competitive advantage. To that end,

RE, framed as a creative problem solving process, plays a key

role in innovating more useful and novel requirements, thereby

improving a software system’s sustainability [2], [3].

Creativity, a multidisciplinary research field, can be con-

sidered as “the ability to produce work that is both novel

(i.e., original and unexpected) and appropriate (i.e., useful

and adaptive to task constraints)” [4]. According to Maiden

et al. [2], creativity in RE is the capture of requirements that

are new to the project stakeholders but may not be historically

new to humankind. It has been suggested that stakeholders

may obtain creative requirements by exploring, combining,

and transforming existing ideas in the conceptual domain [2],

[5]. Note that creativity may be more related to novelty, while

innovation also requires some demonstrated value or utility. In

this sense, our current work focused more on creativity.

In order to aid creativity in RE, recent research has in-

vestigated several approaches. Maiden and colleagues [3],

[6], [7], [8] conducted creativity workshops on exploring

technical and psychological aspects of creativity and suggested

integrating these aspects in the RE process. Techniques, such

as generating requirements with scenario, have been proposed

to support creativity while exploring information analogical

to the current context [9], [10]. In a recent study, Hariri et
al. [11] presented a framework to obtain requirements by

mining feature descriptions of similar products from online

product listings. These contemporary approaches facilitate

creativity by exploring a search space of partial and complete

possibilities of requirements. To further advance the literature,

we support creativity from a combinational perspective, i.e.,

making unfamiliar connections between familiar possibilities

of requirements [5], [12].

In this paper, we propose a novel framework that mines

ideas familiar to the stakeholders and creates new requirements

by obtaining unfamiliar connections. It has been suggested

that people belonging to the same social group are generally

interested in similar ideas and share common knowledge [13],

[14]. Accordingly, in order to extract familiar ideas, we mine

the requirements commonly discussed by distinct stakeholder

groups. To that end, we first group the stakeholders by

clustering the network created based on stakeholders’ social

interaction. Then, we obtain ideas in terms of dominant

topics [15] by applying Latent Dirichlet Allocation (LDA), the

most commonly used technique for topic modeling in natural

language processing [16]. We further achieve unfamiliar com-

binations of the dominant ideas by exploiting part-of-speech

(POS) tagging [17]. We apply our framework on Firefox1 and

Mylyn [18], two large open source software (OSS) systems.

We further conduct a human subject evaluation and the results

indicate promising practical implications of our framework.

The contributions of our work lie in an advancement of

the current solutions that facilitate creativity practice in RE.

Our framework provides automated support for combinational

creativity and complements existing approaches by generating

original and relevant requirements. The rest of the paper is

1http://www.mozilla.org/en-US/firefox/new/

organized as follows. Section II covers background informa-

tion and related work. Section III introduces our framework.

Section IV describes the creation of new requirements for our

subject systems. Section V details the human subject evalua-

tion followed by Section VI presenting further discussion and

the limitations of the work. Finally, Section VII concludes the

paper with an outline of our future work.

II. BACKGROUND AND RELATED WORK

A. Creativity in RE

Creative ideas: Being novel and being appropriate are the

two intrinsic attributes of an idea to be creative [4]. An idea

can be novel from three different aspects: H-Creativity — new

to a person-kind (i.e., historically creative) [5], P-Creativity

— new to a person but not to the person-kind or others

(i.e., psychologically creative) [5], and S-Creativity — idea

for a specific task which is novel in the particular situation or

domain (also known as situated creativity) [19]. Meanwhile,

an idea is appropriate if it is useful to accomplish a task and

can be adapted following the task constraints [4]. According

to Maher et al. [20], from a design perspective, an idea can be

creative if it instigates surprise in terms of deviation in patterns

of outcomes. Maiden and colleagues [2], however, suggest

creativity in RE to be mostly situated creativity, i.e., creating

requirements and other outcomes new to project stakeholders

but need not be historically new.

Over the last decade, several techniques have been pro-

posed in order to measure the novelty of a new requirement.

Ritchie [21] posited a set of formal criteria that could be

applied to assess the creative behavior of software programs.

Measuring dissimilarity to existing domain examples could

be a way of determining novelty of a requirement [12].

In order to invent requirements from software, Zachos and

Maiden [10] exploited requirements similarity matching en-

gines and judged novelty by computing dissimilarities among

analogical matches. In the creativity framework proposed in

this paper, we exploit the idea of measuring dissimilarity in

finding unfamiliar idea combinations.

Categories of creativity: Following Boden [5], creativity

in RE is categorized into three groups depending on the tech-

niques and heuristics used [12]. 1) In exploratory creativity,

creative requirements are obtained by exploring a partial and

complete possibilities in the search space. This exploration is

guided by rules and task constraints specific to the intended

software system. 2) Combinational creativity is achieved by

making unfamiliar connections between known requirements

in a familiar setting. 3) The third way of accomplishing

creativity in RE is to challenge the constraints on the search

space and to enlarge the space of possible requirements to

be explored. Creativity attained by this means is known as

transformational creativity.

Figure 1 presents a conceptual picture of the three cate-

gories of creativity. Let us assume a creativity scenario for a

hypothetical software product S: “provide access control” is a

current requirement and limitation on available hardware is an

initial constraint. Let XY Z be a search space with possible

Fig. 1. Categories of creativity based on techniques and heuristics (adapted
from [12]).

requirements “log-in ID and password”, “finger print”, and

“facial recognition”. Provided that they satisfy the system

constraints, using any of these options for access control is

an instance of exploratory creativity. Combination of two

apparently different access control means, such as log-in

ID and password along with finger print, or log-in ID and

password combined with facial recognition, can be considered

as combinational creativety. Now, let us further consider that

the initial constraint on hardware limitation is relaxed and

we enlarge the search space towards the biometric direction,

thereby obtaining the new search space XY ′Z ′. Options, such

as DNA and retina scan, could also be available due to this

expansion, an instance of transformational creativity.

On the way to creative requirements: Research has con-

ducted creativity workshops and presented several frameworks

in order to incorporate creativity techniques and heuristics in a

direct or indirect manner. Zachos and Maiden [10] conducted

creativity workshops in order to identify requirements for the

Fiat real-time parking space booking system. They performed

an analogical mapping between hotel reservation and parking

space booking, and explored online hotel reservation systems

to create requirements. In order to discover features for a future

air space management software system, exploratory creativity

was followed during the analysis of requirements and emergent

system properties [3]. Lutz and colleagues [22] presented an

approach that performed KAOS Obstacle Analysis to explore

requirements in a space defined by obstacles for a safety-

critical, autonomous system. Salinesi et al. [23] proposed

a prototype tool that performed requirements-based product

configurations within constraints. This tool discovered various

permitted features for a new product in a product line. The

i∗/TROPOS proposed by Fuxman et al. [24] exploited model

checking techniques on the explored space of specification

properties in an attempt to avoid unreasonable requirements.

All these frameworks and tools mostly incorporate exploratory

creativity, directly or indirectly, and are concerned with creat-

ing requirements for a new system or a product line.

Lately, the collaborative nature of creativity in RE has been

highlighted by Mahaux and colleagues [25]. Their research

shows that people often need to work collaboratively to be

creative and provides a framework characterizing the collabo-

rative creative process in RE. Following their findings, in this

paper, we consider the collaborative attribute of creativity and

take into account not only the requirements descriptions but

also the comments posted by stakeholders during their collab-

oration. To that end we utilize the concept of stakeholders’

social network in finding their collaboration groups.

B. Stakeholders’ Social Network in Software Engineering

Stakeholders and social networks based on their interactions

have been widely studied in RE and other software engineering

areas, e.g., software maintenance. Damian et al. [26] presented

the concept of requirements-centric social network by defining

social network among stakeholders working on same or inter-

dependent requirements. Begel et al. suggested that people

could “be friends” by working on the artifacts they share

among them [27]. In order to create a visual representation for

stakeholders’ socio-technical relationship, Sarma et al. [28]

considered both emails among developers and comments in

Bugzilla issue tracking system. Posting and reading comments

by stakeholders were also considered by Wolf and colleagues

as a means to represent communication flow [29]. Building on

the prior research, we consider in our work posting comments

and artifacts on issue tracking systems as social interaction

among stakeholders.

C. Topic Modeling with Latent Dirichlet Allocation (LDA)

LDA was first introduced by Blei et al. [16] as a statistical

model for automatically discovering topics in large corpora

of text documents. The main assumption is that documents

in a collection are generated using a mixture of latent topics,

where a topic is a dominant theme that describes the concept

of the corpus’s subject matter. LDA’s scalability, language-

independency, as well as its ability to work with incomplete

text have made it an appealing analysis model for several

software engineering activities [30], [31], [32]. Because the

requirements of a software system as well as stakeholders’

comments typically contain texual descriptions, LDA becomes

particularly useful for our framework. Such textual content

can be analyzed to produce latent topic structures for the

requirements where every requirements description, associated

with stakeholder comments, is analogous to an individual

document.

Mathematically, a topic model can be described as a hier-

archical Bayesian model that associates a document d in a

document collection D with a probability distribution over a

number of topics T . In particular, each document d in the col-

lection (di ∈ D) is modeled as a finite mixture over T drawn

from a Dirichlet distribution with parameter α, such that each

d is associated with each (ti ∈ T) by a probability distribution

of θi. On the other hand, each topic t in the identified latent

topics (ti ∈ T) is modeled as a multidimensional probability

distribution, drawn from a Dirichlet distribution β, over the set

of unique words in the corpus (W), where the likelihood of a

word from the corpus (wi ∈ W) to be assigned to a certain

topic t is given by the parameter φi.

LDA takes the documents collection D, the number of

topics K, and α and β as inputs. Each document in the corpus

is represented as a bag of words d =< w1, w2, . . . , wn >.

Since these words are observed data, Bayesian probability can

be used to invert the generative model and automatically learn

φ values for each topic ti, and θ values for each document di.
In particular, using algorithms such as Gibbs sampling [33], an

LDA model can be extracted. This model contains, for each t,
the matrix φ = {φ1, φ2, . . . , φn}, representing the distribution

of t over the set of words < w1, w2, . . . , wn >, and for each

document d, the matrix θ = {θ1, θ2, . . . , θn}, representing the

distribution of d over the set of topics < t1, t2, . . . , tn >. The

topic with the highest probability of occurrence in d is the most

dominant topic for d. Therefore, for the document collection

D, the topic that becomes dominant the greatest number of

times is the most dominant topic for D.

Topic modeling in software engineering: Topic mod-

eling has recently been used in several research areas of

software engineering, such as mining software repositories

(MSR) [15], [32], [34], requirements traceability [30], and

software evolution [35]. Linstead et al. [15] applied LDA

topic modeling technique on the source code of different

versions in order to analyze software evolution. Linstead and

colleagues [34] further used topic modeling on Internet-scale

software repositories, and summarized program function and

developer activities by extracting topic-word and author-topic

distributions. The use of topic modeling over source code

has been validated and it has been found that the evolution

of source code topics is indeed caused by actual change

activities in the code [32]. Asuncion et al. [30] proposed

an automated technique that combined traceability with topic

modeling and performed semantic categorization of artifacts

during the software development process.

The above efforts follow a common approach in that they

apply topic modeling on source code written in computer

programming languages. In the creativity framework presented

in this paper, one of the objectives is to extract existing ideas

from documents mostly written in a natural language (e.g.,

English). To that end, we adopt LDA, perhaps the most proven

topic modeling technique for NLP, thereby generating the

underlying dominant themes from requirements and comments

posted by stakeholder groups. In the next section, we present

a detailed discussion of our creativity framework.

III. OUR CREATIVITY FRAMEWORK

Figure 2 presents an overview of our framework that applies

a combinational creativity technique to obtain new require-

ments for an existing system. The framework starts with a

social network based on stakeholders’ social interaction, goes

through several phases involving techniques, such as cluster-

ing, topic modeling, POS tagging, and similarity analysis, and

ultimately creates new requirements in an automated manner.

These requirements could be considered as an initial baseline

Network Clustering

Stakeholder Groups with Associated
Requirements & Comments

Topic Modeling
using LDA

Filter out
Familiar Topic Combinations

Search Space

T1

T4

T3
T2

T1

T4

T3
T2

+

Requirements and
Stakeholders’ Comments

New Requirements

Stakeholders’ Social Network

Search Space with Most
Unfamiliar Pairs

Elaborate Requirements

Fig. 2. A framework for combinational creativity.

for creative requirements that can further be discussed among

stakeholders for analysis and modification. In the rest of this

section, we discuss the phases of this framework in details.

1. Building the social network: The first phase of our

framework is to build a weighted connected graph representing

the stakeholders’ social network. This network should be built

based on stakeholders’ communication, i.e., two people com-

municating among themselves should be connected by an edge

and how strongly (or frequently) they communicate should

be reflected by the edge weight. As several communication

means could be followed by stakeholders (cf. Section II-B),

our framework does not set any restriction on what activities

should be considered as stakeholders’ social communication.

Depending on the practice followed in a specific software

development environment, any set of well defined and properly

recorded communication means should be suitable.

2. Clustering the social network: This phase involves

clustering the social network in order to obtain stakeholders’

social groups. The idea is that the members in the same group

have more frequent interaction, whereas there is sparse com-

munication among people belonging to different groups [14].

Our framework is flexible from the perspective of clustering in

that any suitable network clustering algorithm [36] can be used

as long as necessary information required for the clustering

algorithm is available for the social network in concern. Tool

supports, both commercial and open source, are available that

can be used to perform this clustering activity [37], [38].

3. Extracting familiar ideas: As people belonging to the

same social group are generally interested in similar ideas [13],

[14], this phase of our framework involves identifying such

ideas. In doing so, requirements and comments posted by each

member in a social group are collected as text documents, one

for each stakeholder. Let us assume that i number of groups

have been obtained after the clustering phase. If there are Ni

number of members in the i-th group, there will be a collection

of Ni documents. LDA is applied on each document collection

Ni in order to obtain the topic-word distribution matrix φ and

document-topic distribution matrix θ. Irrespective of the size of

the document collection, LDA always generates t topics where

t is a positive natural number (often 100 [15]) chosen by the

user. As both φ and θ provide the probability distribution of

a large number of words and topics respectively, the number

of words and topics should be considerably reduced to avoid

an explosion of idea combinations in the later phases of this

framework. To that end, the following procedure is pursued

for each document collection Ni.

• We use the five most probable words from each topic as

representatives of the topic’s subject; 5 to 3 words were

found to be sufficient to convey the topic’s subject [39].

• We use the most probable (dominant) topic of each doc-

ument to represent the document. Formally, a dominant

topic can be described as θi,j = max{θh,j , h = 1...k}.

• The topics are sorted in descending order based on the

number of documents they are dominating.

• These numbers are plotted against the topics and the

cutoff is taken based on the trend, thereby obtaining a

smaller number of topics for the social group.

4. Obtaining unfamiliar combinations of familiar ideas:
Extracted dominant topics provide us a search space of fa-

miliar ideas (cf. Figure 2). Our objective is to make unfa-

miliar connections between familiar possibilities in the search

space. To that end, we aim to combine words from two

topics, one word from each topic, coming from two dif-

ferent stakeholders’ groups. If there are 10 groups with 5

dominant topics per group and 5 words per topic, there will

be 10C2× 25C1× 25C1 = 28, 125 unique word pairs. This will

lead to a combinatorial explosion problem for systems with a

large number of diverse stakeholders. In order to tackle this

issue, we follow the work on semantic analysis in RE [40],

[41] to tease out the action-oriented theme of a requirement.

Such theme, according to Fillmore’s case theory [42], can be

characterized by the verb in a requirements description and

the direct object that the verb acts on. Building upon this

knowledge, we structure this phase of the framework with the

following two steps, as illustrated in Fig. 3.

• Flipping the part-of-speech: For each topic word, we

identify its common POS in the existing requirements and

comments over the original corpus using a POS tagger.

POS tagging is recently being used in text based software

engineering tools, such as SWUM [43] and POSSE [44].

We take the most common verb from a topic and the

most common noun (object) from another, where two

Fig. 3. Finding the least common verb-noun pairs: the leftmost box in the picture contains three topics, represented by three circles, with 5 words each.

topics belong to two separate groups of stakeholders, and

consider the words as noun (object) and verb respectively.

We identify all such verb-noun pairs.

• Finding system specific unfamiliar pairs: To further en-

sure unfamiliarity, we rank the verb-noun pairs based on

their average textual similarities [45] with the current

requirements. Then, we filter out the combinations with

higher similarity values following a relative filtering

approach [45], thereby reducing the search space to most

unfamiliar verb-noun pairs (cf. Fig. 2).

5. Elaborating requirements from verb-noun pairs: All

the word pairs obtained from the previous phase are presented

to a human analyst, preferably a stakeholder proficient in the

software’s functional attributes. The analyst is also supplied

with the semantic and contextual information about the words,

as well as more frequently used phrases around the words

in the existing requirements. Equipped with these resources,

the analyst shall phrase statements following some syntax,

e.g., subject + verb + noun/object, and further elaborate the

statement using contextual information to obtain new require-

ments. The subject could be the software system itself (e.g.,

Firefox) or a suitable phrase from the context. Our framework

is flexible in this regard as the analyst is free to elaborate the

requirements in her own words as long as the ideas provided

by the verb-noun pairs are reserved. Further technical details

of the framework is presented in Section IV.

IV. CREATING REQUIREMENTS USING OUR FRAMEWORK

This section explains our procedure of examining how the

proposed framework supports combinational creativity in RE.

In particular, we detail the activities we perform to tease

out original, unexpected, useful, and adaptive requirements

following the specific phases discussed in Section III.

A. Methodology

In order to test our framework, we select two OSS systems:

Firefox and Mylyn [18]. We select these projects as our subject

systems for a number of reasons. First, they are large OSS

systems and were previously studied in software engineering

research [18], [46]. Second, they are very successful appli-

cations and can be considered representatives of their own

domains. Third, the relevant data about these systems, required

to conduct this study, are freely available online over Bugzilla.

This enables other researchers to replicate our study. Next is

a brief description of our chosen systems.

• Firefox: A very successful open source project and a

dominating Web browser since its first release in 2004.

From November 2004 to June 2011, Mozilla released

Firefox stable versions 1.0 through 5.0 and after that

made some rapid releases.2 We collect data about the

closed requirements (feature requests) of the stable ver-

sions.

• Mylyn: A stable plug-in that monitors programmer ac-

tivity in the Eclipse IDE [18]. It was first started as a

part of the PhD thesis supervised by Gail Murphy at

the Software Practices Lab at UBC.3 We consider the

closed requirements of Mylyn from its starting in 2005

till February 2012.

For every requirement, we collect information as follows:

requirement ID, description, comments, proposer (i.e., stake-

holder who proposed the requirement), and stakeholders post-

ing comments and artifacts. All the information, directly avail-

able from the requirements page, is collected by running a Web

scraping tool written in Java. Table I presents the collected data

that we analyze for the subject systems. Note that we observe

many requirements marked as duplicates (specially in case of

Firefox), and exclude them from our study.

B. Creative Requirements via Idea Combinations

Building the social network: For each subject system,

the social network is a weighted graph where each node

represents a stakeholder. An edge in the graph represents the

communication among two stakeholders and the weight of this

edge indicates the total instance of communications between

them. To define the weighted edges, we adopt the approach

presented by Wolf et al. [29]. Let X and Y be two stakeholders

and R be a requirement that both X and Y contribute to. We

identify an edge XY representing communication between X
and Y if: 1) X is the proposer of R or has posted a comment

or artifact about R that is read by Y; or 2) Y is the proposer of

R or has posted a comment or artifact about R that is read by

X. As issue trackers do not keep direct trace of a stakeholder’s

reading activity, following Wolf et al. [29], we assume Y read

the information posted by X about R if and only if Y also

made a posting. We aggregate such communication instances

between X and Y over the analyzed history and obtain the

weight of an edge XY.

Obtaining stakeholders’ groups: In order to identify

stakeholders’ groups, i.e., people who interact more fre-

quently among themselves, we cluster the social networks

built in the previous phase. To that end, we use Ucinet [37],

2http://www.mozilla.org/en-US/firefox/releases/
3http://www.eclipse.org/mylyn/about/

TABLE I
DATA COLLECTION OF SUBJECT SYSTEMS

System Application domain Analyzed history # of req.s Avg. # of comments per req. # of code files Written in
Firefox Web browser 2004–2011 983 18 1,968 (C/C++) C/C++, JavaScript
Mylyn Eclipse plug-in 2005–2012 445 11 2,321 Java

TABLE II
CLUSTERING RESULTS

System # of stakeholders in social network # of clusters (groups) Avg. group size� Fit value
Firefox 783 36 22 (±8.29) 0.783
Mylyn 136 9 16 (±6.82) 0.817
�The average value rounded to the next round number.

TABLE III
TOPICS OBTAINED

System # of clusters Total # of topics Avg. # of topics per cluster∗ Possible unique word pairs
Firefox 36 318 9 (±4.15) 1,239,150
Mylyn 9 48 6 (±3.72) 29,864
∗The average value rounded to the next round number.

which provides social network clustering and related features.

Ucinet [37] takes the total number of expected clusters k as

input and applies hierarchical clustering algorithm based on

node similarities. In our context, a higher edge weight means

higher similarity between nodes. The output is a text file that

elicits the clusters and also provides a fit value where a lower

fit value indicates better cluster quality [37]. For both Firefox

and Mylyn, we start the clustering process with k=2, observe

the fit values by gradually increasing k, and stop further

clustering when there is no more reasonable decrease in the

fit value. Table II presents the clustering results.

Familiar ideas from stakeholders’ groups: Phase 3 of

our framework applies LDA [16] on the requirements and

comments from all the stakeholders in a social group. For

this activity, we use JGibbLDA.4 This particular implemen-

tation uses Gibbs sampling for parameter estimation and

inference [47]. From the topic-word matrix and document-

topic matrix produced by JGibbLDA, we extract the dominant

topics following the heuristics presented in Section III. Along

with these matrices, JGibbLDA also produces a topic-words

file from which we pick the top 5 words for each topic as topic

words. It should be noted that we filter out common key words,

such as Firefox and Mylyn, based on the system’s context

along with frequently used English stop words to avoid noise.

However, we find some words appearing in multiple topics,

such as Web in case of Firefox and task in case of Mylyn. In

such cases, the word is assigned to the topic where it shows

the highest probability of occurrence. The results after this

phase is summarized in Table III.

The column ‘Possible unique word pairs’ in Table III

presents the number of unique word pairs considering one

word per topic from two different stakeholder groups. The

high number of possible combinations makes it apparent that

without further filtering, elaborating requirements from the

word pairs will be very daunting for an analyst. Furthermore,

not all word pairs will make much sense so that a meaningful

4http://jgibblda.sourceforge.net/

0

0.005

0.01

0.015

0.02

0.025

Pa
ir
1

Pa
ir
5

Pa
ir
9

Pa
ir
13

Pa
ir
17

Pa
ir
21

Pa
ir
25

Pa
ir
29

Pa
ir
33

Pa
ir
37

Pa
ir
41

Pa
ir
45

Pa
ir
49

Pa
ir
53

Pa
ir
57

Pa
ir
61

Pa
ir
65

Pa
ir
69

Pa
ir
73

Pa
ir
77

Pa
ir
81

Pa
ir
85

Pa
ir
89

Pa
ir
93

Pa
ir
97

Pa
ir
10

1
Pa
ir
10

5
Pa
ir
10

9
Pa
ir
11

3
Pa
ir
11

7
Pa
ir
12

1
Pa
ir
12

5

Avg_TF IDF

Cutoff line

Fig. 4. Finding the least common verb-noun pairs for Mylyn.

requirement could be generated. The filtering phase that we

go through next is specifically designed to tackle this issue.

Unfamiliar idea combinations for Firefox and Mylyn:
This phase first uses Brill’s tagger [17] to identify the most

common POS for every topic word in the existing requirement

descriptions over the original corpus. This allows us to find the

most common noun (object) and the most common verb based

on the word probabilities in the topic-words file produced in

the previous phase. We consider them as least common verb

and least common noun respectively, thereby producing the

least familiar verb-noun pairs (from the system’s perspective)

for both Firefox and Mylyn.

Next, following the experience presented in our previous

work [48], we calculate TF-IDF cosine similarities between a

verb-noun pair and the existing requirements. We average the

similarity values obtained for every pair and operationalize

a relative filtering scheme to filter out the pairs with higher

average similarities. To that end, we extract the verb-noun

pairs with average similarity ≤ 0.20∗highest similarity and

consider them as the final set of verb-noun pairs. Noted that the

level of this cutoff is subject to calibrate for the requirements

engineer to work with a manageable set of idea pairs for

further expansion. Figure 4 demonstrates the filtering scheme

for Mylyn. Table IV summarizes the results after this phase.

Elaborating requirements from pairs: In order to carry

out this phase, we recruited a professional software engineer

named Bob (pseudonym), working at a local software devel-

TABLE IV
UNFAMILIAR IDEA COMBINATIONS

System Possible idea combinations
Initial After POS tagging Final

Firefox 1,239,150 2436 34
Mylyn 29,864 128 9

opment company. As part of his current job, Bob performs

requirements analysis related activities at a regular basis. At

work, he executes most of his development activities in Java

using Eclipse IDE, and has been using both Firefox and Mylyn

for several years. We provided Bob with the final set of

word pairs (i.e., unfamiliar idea combinations), automatically

generated contextual information for each word, and a set of

sample templates to guide the elaboration. We asked Bob to

come up with as many new requirements as possible using

the word pairs within a time frame of two hours. Bob was

requested to preserve the syntax ‘verb and noun (object) the

verb acts upon’ as much as possible, and was allowed to use

the Internet, if necessary. A researcher was present to explain

the task and the provided artifacts, observe Bob’s activities

during this elaboration process, and conduct an exit interview.

Figure 5 demonstrates the elaboration of a new require-

ment for Firefox. The words ‘text’ and ‘number’ were ob-

tained from the topics <support, text, lock, login, enter>
and <build, compile, number, tool, item> respectively. The

dotted boxes contain recommended context information. Note

that Bob did not use any recommended word from the topic

list for ‘text’ while writing the requirement “Firefox user can

text phone number from the web page.” After two hours,

Bob elaborated 8 requirements for Firefox and 5 for Mylyn,

as shown in Table V. The last column contains the final

requirements descriptions after refinement and some nouns and

verbs do not preserve their initially assigned POS anymore.

Section VI provides further discussion on this issue. Next we

present a human subject evaluation of our framework.

V. HUMAN SUBJECT EVALUATION

A. Study Setup

We recruited 29 developers with experience in Java and C#,

including both undergraduate and graduate students and staff

programmers from our institute. The developers participated

voluntarily by responding to an email invitation. We made

a confidentiality agreement with the participants to respect

their anonymity. Each participant worked individually in a

lab and began by signing the consent form. The demographic

number

Verb Noun pair

textHTML text
Text box
Copy text
Text file
…….
…….

Phone number
House number
Road number
ID number
…….
…….

Requirement: Firefox user can text phone number from the web page

Sample Templates:
1. Firefox should……. + Verb + ……...Noun/Object………..
2. Firefox users can……. + Verb + ……...Noun/Object………..
3. Firefox needs to……. + Verb + ……...Noun/Object………..

Fig. 5. Example for requirements elaboration.

TABLE V
ELABORATED REQUIREMENTS FOR FIREFOX AND MYLYN

System Verb Noun Elaborated requirement

Firefox

float view F1: Firefox should provide floating tab view
button save F2: Firefox should provide button for saving all tabs
inform count F3: Firefox should inform user the count of open tabs
select save F4: Firefox user can select text saving directly into files
arrow browse F5: Firefox should provide arrow to browse tabs
zoom drag F6: Firefox users can zoom in/out by a dragging slider
text number F7: Firefox user can text phone number from the web page

parallel view F8: Firefox can parallel tab view

Mylyn

person set M1: Mylyn should provide options to personalize settings
window manage M2: Mylyn should providewindow for query manager

credential issue M3: Mylyn should be credentialing issue tracking system
plug comment M4: Mylyn should plug comment to issue tracking system

shortcut track M5: Mylyn should provide shortcut to issue tracker

information was also collected at this stage through a pre-study

survey. The information included software development expe-

rience, familiarity with the subject systems, and the primary

and secondary programming languages. The recruits reported a

median of 3.5 years of software development experience. All

the participants have had experience with Firefox (27 users

only and 2 contributors) and 9 had knowledge about Mylyn.

Irrespective of experience, a tutorial on the latest versions of

Firefox and Mylyn was presented. Then the participant was

given hard copies of the requirements along with the word

pairs (cf. Table V) and was free to use the Internet for further

information, if needed.

The participant’s task was to rate how creative each require-

ment was by using a 5-point Likert scale: 1=least innovative,

2=not innovative, 3=neutral, 4=innovative, 5=most innovative.

It was explained that being innovative in this context meant:

1) Novel and new, as well as, 2) Relevant and useful for the

intended software product. The participant was given an option

to modify the requirement preserving the given term pair in

case she felt some requirement to be less innovative. We asked

every participant to work individually on all the requirements.

A researcher was present to explain the study, to encourage

the participant to think aloud during her session, to take notes,

and to conduct an informal exit interview to elicit feedback

about her experience. Each participant spent approximately 1.5

hours analyzing all the requirements and was presented with

a $10 gift card at the end as a token of our appreciation.

B. Results and Analysis

Figure 6 plots the average ratings reflecting how creative

the participants perceive the requirements to be. The average

ratings vary from being not innovative (e.g., F3 and M5)

to innovative (e.g., F8 and M3) based on the 5-point Likert

scale (cf. Section V-B). Overall, however, 6 Firefox and 4

Mylyn requirements can be considered innovative based on

the average ratings. In order to assess the agreement among

the participants on their ratings, we adopt kappa statistic
(κ), a widely used measure of inter-rater reliability [45].

Kappa statistic returns a value in [0, 1], where κ=0 shows no

agreement and κ=1 suggests complete agreement. We find the

average κ for Firefox and Mylyn requirements to be 0.79 and

0.67 respectively. According to the magnitude guideline pro-

vided by Manning et al. [45], these values indicate substantial

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F1 F2 F3 F4 F5 F6 F7 F8

Firefox: Avg. Rating

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M1 M2 M3 M4 M5

Mylyn: Avg. Rating

(b)

Fig. 6. Average ratings for the created requirements.

agreement among the participants. These results suggest that

our framework helps generate innovative requirements in an
automated manner. Some individual κ values, however, indi-

cate slight agreement about the innovative values. Section VI

provides further insight about this observation.

VI. DISCUSSION

So far, we have discussed how our combinational creativity

framework can be applied to create new requirements for

Firefox and Mylyn and our assessment on the innovative

values of these requirements. In this section, we shed light

on some observations and some lessons learned.

A. On Requirements Elaboration from Word Pairs

Compared to the possible idea combinations initially found

(1,239,150 for Firefox and 29,864 for Mylyn), our framework

has come up with a substantially smaller number of unfamiliar

idea-pairs for further elaboration (cf. Table IV). We consider it

to be the greatest strength of this framework as requirements

elaboration is largely human intensive and a high number of

recommended possibilities will make the elaboration phase

tedious and overwhelming. Such a laborious activity in a

framework like ours will break its main objective of offering

automated support. However, the adjustable calibrations during

the filtering phase always provide rooms to obtain higher

number of unfamiliar idea combinations, if necessary.

One issue though, about our framework, pointed out by Bob

(cf Section IV), is sticking to the idea of verb and noun (object)

the way they are recommended. We observe Bob spending

quite some time to come up with requirements descriptions

that preserve the given POS of the words. In several cases,

although he started with the verb-noun outline, he rephrased

the requirements (e.g., F2 and M5) to make better senses out

of them. When asked about his feedback on the elaboration

process during the exit interview, one comment from Bob

substantiates our observation.

I think the verb-object concept was helpful in the

beginning to get some initial idea about a require-

ment. But strictly following that.... I don’t think it

will always work, nor I think it is necessary. In fact,

sometimes it feels really over killing.

We would like to emphasize at this point that preserving

the given POS should be considered as an initial guideline and

may not be followed as a strict rule. Thereby our framework

should provide enough space to phrase the requirements in a

less restrictive manner.

B. On Innovative Requirements

Low average ratings: We observe some requirements re-

ceived relatively low average ratings during the human subject

evaluation. For example, F3 and F5 both received an average

rating below 2.5 and based on the corresponding κ statistics

(0.83 and 0.65), there was a strong sense of agreements among

the participants. In case of F3 (Firefox should inform user the

count of open tabs), we heard a common argument regarding

the usefulness of the requirement to the general users. One

participant recommended “Instead, the count of tabs could be

provided only if there are many tabs opened at once”. For F5,

most of the participants regarded it to be a redundant one. One

participant recommended to make it an optional feature as she

commented,

This requirement would not be very important to a

user with a mouse that can easily click on each tab.

However, it could be an optional one that is enabled

if the user is using a touch screen device.

Requirements with higher ratings for innovation: Some

requirements enjoyed higher average ratings with almost per-

fect agreements [45], e.g., in case of F8 (Firefox can parallel

tab-view), the average rating was 4.1 (κ=0.81). Some partic-

ipants, even after rating it ‘most innovative’, were inspired

to brainstorm around the parallel tab-view idea and enriched

the requirement with further creative thoughts. The following

statements from a participant (rated F8 as 5) demonstrates this

creativity instigating aspect of our framework.

It can be made as a button that will split the view

of the window and will allow the user to drag tabs

into each of them. Also a tab change shortcut can

be applied to whichever window is being hovered

over, allowing the user to retain the same full tab

inventory.

Higher average ratings with limited agreements: In

case of a couple of requirements, we observed relatively

high creativity ratings but with slight agreements [45] among

the evaluators. M4 is such an example (κ=0.19) where two

participants identified it to be a particularly useful feature

as they perceived it would reduce overhead due to context

switches. One participant commented, “As I often contribute

to a couple of open source projects, I think this feature will

be useful for a user in posting comments and artifacts directly

from the IDE”. However, many participants identified it as an

over killing feature mentioning that, “All the issue tracking

systems already provide facilities to post comments..... Don’t

see any point of implementing it here”.

The overall findings attest the creative ability of our frame-

work. In addition, the qualitative results obtained from the

evaluation study indicate that the new requirements can also

act as starting points and ignite improved creative thinking

among analysts. This advances the innovative attributes in the

requirements even further, thereby reinforcing the practicality

of our framework.

C. Limitations

The work presented in this paper contains the development

and demonstration of a conceptual framework, as well as a

human subject evaluation. We discuss the limitations from both

the framework and the evaluation related aspects.

From the framework perspective: Our framework is

limited to its dependency on a large number of existing

requirements preferably contributed by a diverse groups of

stakeholders. The framework, as it is currently outlined, may

not be applicable for a completely new software system in

an emerging application domain. Furthermore, applying this

framework to a system still at an infant stage may result

in fairly limited outcomes. Our framework also largely de-

pends on creating stakeholders’ social network that presents

a reliable projection of their social interaction. As there exist

several social network building techniques (cf. Section II-B),

choosing the right means may be tricky. Our framework does

not apply any restriction on how the social network should

be built and we expect no further limitation along this line.

Similar reasoning is also applicable for the network clustering

techniques. Clustering the requirements and comments directly

(e.g., [49]), instead of the social network, could be an alter-

native. We believe, however, considering the social network

better reflects the collaborative nature of RE [25].

The limitations of topic modeling and POS tagging, such as

working with a properly refined and grammatically well writ-

ten text corpus [16], [17], are also relevant to our framework.

However, the requirements and comments the framework tends

to analyze are expected to be described in reasonably parsable

statements. We also filter out unnecessary and most frequently

used words before applying topic modeling. Therefore, we do

not expect additional limitations due to these techniques. The

practical implementation of our framework revealed a small

number of requirements for the subject systems. This is mainly

due to time constraints for the analyst and a more conservative

filtering criterion (cf. Section IV-B). Further relaxed approach

during these activities should help identify a higher number

of new requirements.

From the evaluation perspective: An important threat to

internal validity is related to the skills of the analyst who

formulated the final requirements. It is therefore unknown

how different RE skills can impact the evaluation results. We

measure how innovative a new requirement is by taking an

average of ratings at a 5-point Likert scale and also use the

kappa statistics that show substantial agreement among the

ratings. However, the participant’s level of familiarity with the

subject system (specially in case of Mylyn [18]) might have a

potential bias in the overall ratings. We mitigate this issue by

presenting a tutorial about the subject systems and allowing

access to the internet and discussion with the researcher

conducting the study for further clarification. We have noticed

frequent use of these resources by the participants, thereby

improving the reliability of our findings.

VII. CONCLUSION

In this paper, we have contributed a novel framework that

provides automated support for innovating requirements from

a combinational creativity perspective [2], [5]. We have also

presented a human subject study evaluating how effectively

our creativity framework contributes novel and appropriate

requirements for an intended software system. The results

show that our framework successfully generates creative (i.e.,

original and relevant) requirements in an automated manner.

Furthermore, the new requirements provoke creative thinking

of an analyst, thereby improving the innovative aspects.

In future, we plan to reduce our framework’s dependency

on existing requirements in order to expand its applicability to

new software systems and live projects. We are also interested

in using methods such as requirements template to facilitate

the last phase of our framework, i.e., elaborating and refining

requirements, thereby further increasing the automation de-

gree. Finally, we intend to push our framework towards the

dimension of transformational creativity in RE [12].

ACKNOWLEDGMENT

We express our sincere gratitude to all the participants

for their valuable contributions to the study. This research

is partially supported by the U.S. NSF (National Science

Foundation) Grant CCF-1238336.

REFERENCES

[1] J. Lemos, C. Alves, L. Duboc, and G. N. Rodrigues, “A systematic map-
ping study on creativity in requirements engineering,” in Proceedings of
the Annual ACM Symposium on Applied Computing (SAC), 2012, pp.
1083–1088.

[2] N. Maiden, S. Jones, K. Karlsen, R. Neill, K. Zachos, and A. Milne, “Re-
quirements engineering as creative problem solving: A research agenda
for idea finding,” in Proceedings of the International Requirements
Engineering Conference (RE), 2010, pp. 57–66.

[3] N. Maiden, C. Ncube, and S. Robertson, “Can requirements be cre-
ative? Experiences with an enhanced air space management system,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2007, pp. 632–641.

[4] R. J. Sternberg, Handbook of creativity. Cambridge University Press,
1999.

[5] M. A. Boden, The creative mind: Myths and mechanisms. Routledge,
2003.

[6] N. Maiden, A. Gizikis, and S. Robertson, “Provoking creativity: Imagine
what your requirements could be like,” IEEE Software, vol. 21, no. 5,
pp. 68–75, 2004.

[7] N. Maiden, S. Manning, S. Robertson, and J. Greenwood, “Integrating
creativity workshops into structured requirements processes,” in Pro-
ceedings of the ACM Conference on Designing Interactive Systems:
Processes, Practices, Methods, and Techniques, 2004, pp. 113–122.

[8] N. Maiden and S. Robertson, “Integrating creativity into requirements
processes: Experiences with an air traffic management system,” in
Proceedings of the International Requirements Engineering Conference
(RE), 2005, pp. 105–114.

[9] I. K. Karlsen, N. Maiden, and A. Kerne, “Inventing requirements with
creativity support tools,” in Requirements Engineering: Foundation for
Software Quality. Springer, 2009, pp. 162–174.

[10] K. Zachos and N. Maiden, “Inventing requirements from software: An
empirical investigation with web services,” in Proceedings of the Int’l
Requirements Engineering Conference (RE), 2008, pp. 145–154.

[11] N. Hariri, C. Castro-Herrera, M. Mirakhorli, J. Cleland-Huang, and
B. Mobasher, “Supporting domain analysis through mining and recom-
mending features from online product listings,” IEEE Transactions on
Software Engineering, vol. 39, no. 12, pp. 1736–1752, 2013.

[12] N. Maiden, “Requirements engineering as information search and idea
discovery (keynote),” in Proceedings of the International Requirements
Engineering Conference (RE), 2013, pp. 1–1.

[13] R. S. Burt, “Structural holes and good ideas,” American Journal of
Sociology, vol. 110, no. 2, pp. 349–399, 2004.

[14] P. Pirolli, “An elementary social information foraging model,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI), 2009, pp. 605–614.

[15] E. Linstead, C. Lopes, and P. Baldi, “An application of latent Dirichlet
allocation to analyzing software evolution,” in Proceedings of the Inter-
national Conference on Machine Learning and Applications (ICMLA),
2008, pp. 813–818.

[16] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet Allocation,” Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[17] E. Brill, “A simple rule-based part of speech tagger,” in Proceedings of
the Workshop on Speech and Natural Language, 1992, pp. 112–116.

[18] M. Kersten and G. Murphy, “Mylar: A degree-of-interest model for
IDEs,” in Proceedings of the International Conference on Aspect-
Oriented Software Development (AOSD), 2005, pp. 159–168.

[19] M. Suwa, J. Gero, and T. Purcell, “Unexpected discoveries and S-
invention of design requirements: Important vehicles for a design
process,” Design Studies, vol. 21, no. 6, pp. 539–567, 2000.

[20] M. L. Maher, K. Brady, and D. H. Fisher, “Computational models of sur-
prise in evaluating creative design,” in Proceedings of the International
Conference on Computational Creativity (ICCC), 2013, pp. 147–151.

[21] G. Ritchie, “Assessing creativity,” in Proceedings of the AISB-01 Sym-
posium on AI and Creativity in Arts and Science, 2001, pp. 3–11.

[22] R. Lutz, A. Patterson-Hine, S. Nelson, C. R. Frost, D. Tal, and R. Harris,
“Using obstacle analysis to identify contingency requirements on an
unpiloted aerial vehicle,” Requirements Engineering, vol. 12, no. 1, pp.
41–54, 2007.

[23] C. Salinesi, R. Mazo, D. Diaz, and O. Djebbi, “Using integer constraint
solving in reuse based requirements engineering,” in Proceedings of
the International Requirements Engineering Conference (RE), 2010, pp.
243–251.

[24] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso, “Model check-
ing early requirements specifications in tropos,” in Proceedings of the
Int’l Symposium on Requirements Engineering (RE), 2001, pp. 174–181.

[25] M. Mahaux, L. Nguyen, O. Gotel, L. Mich, A. Mavin, and K. Schmid,
“Collaborative creativity in requirements engineering: Analysis and
practical advice,” in Proceedings of the International Conference on
Research Challenges in Information Science (RCIS), 2013, pp. 1–10.

[26] D. Damian, S. Marczak, and I. Kwan, “Collaboration patterns and the
impact of distance on awareness in requirements-centred social net-
works,” in Proceedings of the International Requirements Engineering
Conference (RE), 2007, pp. 59–68.

[27] A. Begel, Y. Khoo, and T. Zimmermann, “Codebook: discovering and
exploiting relationships in software repositories,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2010, pp.
125–134.

[28] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in soft-

ware development,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2009, pp. 23–33.

[29] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2009, pp. 1–11.

[30] H. Asuncion, A. Asuncion, and R. Taylor, “Software traceability with
topic modeling,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2010, pp. 95–104.

[31] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
concepts from code with probabilistic topic models,” in Proceedings of
the International Conference on Automated Software Engineering (ASE),
2007, pp. 461–464.

[32] S. Thomas, B. Adams, A. Hassan, and D. Blostein, “Validating the
use of topic models for software evolution,” in Proceedings of the
IEEE Working Conference on Source Code Analysis and Manipulation
(SCAM), 2010, pp. 55–64.

[33] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and
M. Welling, “Fast collapsed Gibbs sampling for Latent Dirichlet Allo-
cation,” in Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2008, pp. 569–577.

[34] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi,
“Sourcerer: Mining and searching Internet-scale software repositories,”
Data Mining and Knowledge Discovery, vol. 18, no. 2, pp. 300–336,
2009.

[35] E. Linstead, P. Rigor, S. K. Bajracharya, C. V. Lopes, and P. Baldi,
“Mining Internet-scale software repositories.” in Proceedings of the
Neural Information Processing Systems (NIPS), 2007.

[36] J. Wu, Advances in K-means Clustering: A Data Mining Thinking.
Springer, 2012.

[37] S. P. Borgatti, M. G. Everett, and L. C. Freeman, Ucinet for Windows:
Software for social network analysis. Analytic Technologies, 2002.

[38] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” in Proceedings of
the International Conference on Weblogs and Social Media (ICWSM),
2009, pp. 361–362.

[39] J. Chang, J. L. Boyd-Graber, S. Gerrish, C. Wang, and D. M. Blei,
“Reading tea leaves: How humans interpret topic models,” in Proceed-
ings of the Neural Information Processing Systems (NIPS), vol. 22, 2009,
pp. 288–296.

[40] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopoulos, “On
goal-based variability acquisition and analysis,” in Proceedings of the
International Requirements Engineering Conference (RE), 2006, pp. 79–
88.

[41] N. Niu and S. Easterbrook, “Extracting and modeling product line func-
tional requirements,” in Proceedings of the International Requirements
Engineering Conference (RE), 2008, pp. 155–164.

[42] C. Fillmore, “The case for case,” in Universals in Linguistic Theory,
E. Bach and R. Harms, Eds. New York: Holt, Rinehart and Winston,
1968, pp. 1–88.

[43] E. Hill, Integrating natural language and program structure information
to improve software search and exploration. PhD. Thesis, University
of Delaware, 2010.

[44] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker, “Part-of-speech
tagging of program identifiers for improved text-based software en-
gineering tools,” in Proceedings of the International Conference on
Program Comprehension (ICPC), 2013, pp. 3–12.

[45] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-
tion retrieval. Cambridge university press Cambridge, 2008, vol. 1.

[46] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: A case study on firefox,” in Proceedings of the Working Confer-
ence on Mining Software Repositories (MSR), 2011, pp. 93–102.

[47] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings
of the National academy of Sciences of the United States of America,
pp. 5228–5235, 2004.

[48] N. Niu, J. Savolainen, T. Bhowmik, A. Mahmoud, and S. Reddivari, “A
framework for examining topical locality in object-oriented software,”
in Proceedings of the Annual Computer Software and Applications
Conference (COMPSAC), 2012, pp. 219–224.

[49] N. Niu and A. Mahmoud, “Enhancing candidate link generation for
requirements tracing: The cluster hypothesis revisited,” in Proceedings
of the International Requirements Engineering Conference (RE), 2012,
pp. 81–90.

